
Tabular Data War: Can Deep Learning Conquer the Last Bastion of GBDT?
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The Golden Age of Deep Learning: Conquering Unstructured Data 

AI Generated

“The World is conquered by Deep Learning” 
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The Last Bastion: Why not Tabular? 

Grinsztajn et al., "Why do tree-based models still outperform deep learning...?", NeurIPS 2022 (Abstract).
Shwartz-Ziv & Armon, "Tabular Data: Deep Learning is Not All You Need", Information Fusion 2022 (Abstract).
Jiang et al., "A Data-Centric Perspective on Evaluating Machine Learning Models...", ArXiv 2024 (Abstract).

"Despite these efforts, Gradient Boosted 
Decision Trees (GBDTs) remain the state-of-the-
art." 

"Despite recent advances in neural network (NN) 
architectures for tabular data, there is sll  
an acve debate over whether or not NNs 
generally outperform gradient-boosted decision 
trees (GBDTs) on tabular data” 

2016

"Tree-based models remain state-of-the-art on 
medium-sized tabular data." 

“Our study shows that XGBoost outperforms these 
deep models across the datasets, including the 
datasets used in the papers that proposed the deep 
models.”

2022 2022 

2024 2023 
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Background: Cleaning up the Hype 

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural 
Information Processing Systems, 35

Issues: 
• Unequal Tuning 
• No Benchmark 
• Unreplicability 

“We have beaten GBDT” 

“No, you haven’t” 

2022 NeurIPS, 인용수 : 2498회 (2026/1/23) 
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The Benchmark: 45 OpenML Datasets 

v 데이터셋선정기준 (OpenML에서 총 45개데이터셋엄선) 
• 이질적컬럼 (Heterogeneous columns) 
• 낮은차원 (Not high dimensional): 샘플수대비차원비율 1/10 미만, 전체차원수는 500 미만 
• 문서화여부 (Undocumented datasets): 정보가너무부족한데이터는제외 
• I.I.D. 데이터 (I.I.D. data): 독립항등분포를따르는데이터만선택 
• 실제데이터 (Real-world data): 인공(Artificial) 데이터제외, 일부 시뮬레이션데이터는포함 
• 적절한크기 (Not too small): 특성(feature) 4개미만, 샘플 3,000개미만데이터제외, 10,000개이상

은학습샘플을 10,000개로맞춤. 
• 적절한난이도 (Not too easy): 단순모델과강력한모델의성능차이가 5% 미만이면제외 
• 비결정론적 (Not deterministic): 타겟이데이터의결정론적함수인경우제외 

 
Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural 
Information Processing Systems, 35
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The Fairness: Rigorous Hyperparameter Tuning 

Tree Based - XGBoost - Random Forest - Gradient Boosting 

DL - MLP - ResNet(Tabular version) - FT-Transformer - SAINT  
• 하이퍼파라미터최적화프로토콜 :  

• 각데이터셋마다 400회(Iterations)의랜덤서치기회를부여. 
• Hyperopt-Sklearn 하이퍼파라미터공간 
• Hyperopt-Sklearn에해당모델의공간이없거나, 원논문에서특정모델에대한제안이 

있다면, 해당논문의권장탐색공간을따름 
• 랜덤서치순서를 15가지로셔플(shuffle)하여평균(순서에따른조기최적화효과방지) 

• 사용모델 :  

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural 
Information Processing Systems, 35



10

The Metric: Aggregation Strategy  

1. 평가지표 (Metrics): 
• Classification: Test Accuracy (정확도) 
• Regression: R2 Score (설명력) 
 

2. 통합방법 (Aggregation Strategy): 
• ADTM(average distance to the minimum): 모든점수를 0(하위권) ~ 1(최고점)로변환하여통합. 
• 하위권(0점) 기준 : 하위 10%(분류문제) / 하위 50%(회귀문제) 
• 0점의기준을 '꼴찌모델(Worst)'로잡지않음으로써이상치왜곡방지. 

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural 
Information Processing Systems, 35
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The Verdict: Trees Win on Medium Data 

• 점선(Dotted lines) : 기본하이퍼파라미터에서점수 
 

• 값(Values) : 특정횟수만큼랜덤서치(튜닝)를진행했을때 
찾은최고모델(Validation set 기준)의테스트점수. 
 

• 신뢰구간 : 랜덤서치순서를 15번섞어서(Shuffle) 평균을 
낸값이며, 리본(Ribbon) 영역은최소/최대점수범위를나
타냄. 

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural 
Information Processing Systems, 35
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Why DL Failed 1: overly smooth solution 

1. 실험설계 (The Experiment): 
• 가설 : 정형데이터의타겟함수는종종불연속

적(Irregular)지만딥러닝모델은 연속적이고
매끄러운함수근사를유도하는경향이있다. 

• 실험조작: '학습' 데이터의정답(Target) 함수를 
Gaussian Kernel로인위적으로 Smoothing '
부드러운데이터'로변조함. 

2. X축: Smoothing 정도 (0 ~ 0.25) 
3. Y축: Normalized Test Score (모델성능) 

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural 
Information Processing Systems, 35
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Why DL Failed 2: Sensitivity to Uninformative Features 

1. 실험설계 (The Experiment): 
• 가설: ResNet과같은신경망구조는정보가없는 

불필요한(Uninformative) 특성에취약하여, 이러
한특성이늘어날수록트리기반모델보다성능이 
더크게하락할것이다. 

• 실험조작: 기존데이터셋에타겟변수(정답) 및다
른특성들과상관관계가없는무작위노이즈
(Standard Gaussians) 특성을인위적으로추가. 

2. X축: 추가된비정보적특성의비율(0~100%) 
3. Y축: 최적모델의정규화된테스트점수 

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural 
Information Processing Systems, 35
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Why DL Failed 3: Rotational Invariance 

1. 실험설계 (The Experiment): 
• 가설: 정형데이터에서는각입력특성축이고

유한의미를가지므로, 입력공간의회전은의미 
있는구조를훼손하게된다. 따라서축에민감한 
트리기반모델은회전에의해성능이크게저하
되며, 회전불변적인성질을가진신경망모델은 
상대적으로영향을덜받을것이다. 

• 조작: 무작위회전행렬(Random Rotation 
Matrix) 적용 

2. X축: No Rotation(원본데이터) / Rotation(회전된 
데이터) 

3. Y축: 최적모델의정규화된테스트점수 
Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural 
Information Processing Systems, 35
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A New Front Opens: TabArena 

Erickson, N., et al. (2025). TabArena: A Living Benchmark for Machine Learning on Tabular Data. Advances in Neural Information Processing Systems, 38.

1. Problematic data :  
• Outdated, problematic license, data leakage 
• 현실(Real-world task)을반영하지못함. 

2. Baselines Stuck in Time:  
• 벤치마크가한번발표되면업데이트되지않음(Static). 
• 최신모델(SOTA)이나왔는데도, 여전히몇년전모델

하고만비교함. 
3. Unreliable Evaluation  :  

• 기존평가프로토콜에대한회의론(Skepticism) 증가. 
• 후속연구에서결함이발견되어도수정되지않음. 

2025 NeurIPS, 인용수 : 29회 (2026/1/23) 
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What is different from 2022 (1/2) : New Weapons - Pre-trained specialist & Ensembles 
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What is different from 2022 (2/2) : From 'Equal Iterations' to 'Equal Time’ 

1. 2022 (Scientific Fairness): 
• 기준: Iteration (반복횟수) 
• 맹점: 일반적으로신경망이트리모델

보다학습이더느림,  현업에선불공
정함. 

2. 2025 (Production Fairness): 
• 기준: Time Budget (제한시간). 
• Pareto Frontier (시간대비성능) 평

가도입. 
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The Small Data(<10K, feature <500) Leaderboard : Enter the Foundation Model 

1. DataSet (tabPFNv2 사용가능데이터): 
• Small Data(데이터 1만개이하, 컬럼 500개이하). 

2. 평가지표 : Elo 
• 성능우위(AUC, RMSE 등)를브래들리-테리(BT) 모델

로통합분석한뒤, 랜덤포레스트(1000점)를기준으

로환산하여수치화한점수

 
3. 결과 (Rank): TabPFNv2 (압도적, 2위와격차큼). 

• 튜닝이나앙상블없이, 기본값(파랑)만으로도이미최
상위권. 

Erickson, N., et al. (2025). TabArena: A Living Benchmark for Machine Learning on Tabular Data. Advances in Neural Information Processing Systems, 38.
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What is TabPFN? 

• 1. 정의 (Definition): In-Context Learning을통해사후예측분포(PPD)를근사하는트랜스포머모델 
• 2. 핵심메커니즘 (Core Mechanism) : 

• Training Phase (Meta-Learning): 
• Input: 수천만개의 가상데이터셋 (Synthetic Priors). 
• Objective: P(y|x,Dtrain)을최대화하는파라미터(Φ) 학습. 
• Source: Structural Causal Models (SCMs), Bayesian Networks 등을통해생성된다양한분포. 

• Inference Phase (In-Context Learning): 
• Process: 파라미터업데이트(Gradient Descent) 없음. 
• Operation: 전체학습데이터(Dtrain)와테스트데이터(xtest)를하나의시퀀스로입력 → Single Forward P

ass → 예측값(ytest) 도출. 
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Revisiting the 2022 Bottleneck 1 : overly smooth solution 

Hollmann, N., Müller, S., Purucker, L. et al. Accurate predictions on small data with a tabular 
foundation model. Nature 637, 319–326 (2025).



21

Revisiting the 2022 Bottleneck 2 : Uninformative Features 

Hollmann, N., Müller, S., Purucker, L. et al. Accurate predictions on small data with a tabular 
foundation model. Nature 637, 319–326 (2025).

• 변화요소 : 원본데이터셋의특성 D에노이즈특성을 9 x D개 
추가(90%) 

• 반복횟수: 각데이터셋및설정당 10회의반복실험평균값 
• 데이터셋 : AutoML Benchmark, OpenML-CTR23에서선

정된분류 29개, 회귀 28개 
• 평가지표:  

• Classification: Normalized ROC AUC 
• Regression: Normalized Negative RMSE정규화 

• Normalization 방식: min-max normalization 
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Revisiting the 2022 Bottleneck 3 : Rotational Invariance 

1. MLP : 축을섞음 
2. FT-Transformer, TabPFN : 축을보존 
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Where Are We Now? — TabArena and TabPFN v2.5 

tabArena.ai (2026.01.23)
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Conclusion: A New Equilibrium in Tabular Learning 
1. 딥러닝의귀납적편향극복 

• The Barriers : Smoothness Bias, Uninformative Features, Rotational Invariance 
• 극복메커니즘 : Synthetic Priors (TabPFN),  Attention, 

2. Tabular Foundation Model : Zero-shot, In-context Learning 
3. Living Benchmark(tabArena) : 최적의도구실시간확인




