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The Golden Age of Deep Learning: Conquering Unstructured Data
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Introduction
2022

2022 TABULAR DATA: DEEP LEARNING IS NOT ALL YOU NEED

Why do tree-based models still outperform deep G il AT iemen
ravid zivi@intel. com amitaiarman{& ntel.com
IT A1 Group, Intel IT Al Group, Intel

learning on typical tabular data?

November 24, 2021

Léo Grinsztajn Edouard Oyallon Gaél Varoquaux
Soda, Inria Saclay MLIA. Sorbonne University Soda, Inria Saclay

leo.grinsztajn@inria.fr

Decll_islltoGEMTg ee “Our study shows that XGBoost outperforms these
GB°°St' 2 o at8°°s‘ deep models across the datasets, including the
' N ¢ datasets used in the papers that proposed the deep

7 5 LightGBM models.”

1 2024

. A Data-Centric Perspective on Evaluating Machine
Learning Models for Tabular Data

"Tree-based models remain state-of-the-art on
medium-sized tabular data."

XGBoost
(2016)

2023

When Do Neural Nets Outperform Boosted Trees on
Tabular Data?

Duncan McElfresh* *?, Sujay Khandagale®, Jonathan Valverde*, Vishak Prasad C?,
Stefan Liidtke

Andrej Tschalzev® Sascha Marton

Benjamin Feuer®, Chinmay Hegde®, Ganesh Ramakrishnan®, Micah Goldblum®, Colin White!
* Abacus.Al ? Stanford,  Pinterest, * University of Maryland,
2 11T Bombay, * New York University, ” Caltech University of Mannheim University of Mannheim University of Rostock
"Despite recent advances in neural network (NN) sty of Msabei Ve o Mttt
architectures for tabular data, there is still
an active debate over whether or not NNs "Despite these efforts, Gradient Boosted
generally outperform gradient-boosted decision Decision Trees (GBDTs) remain the state-of-the-
trees (GBDTs) on tabular data” art.”
IS
Grinsztajn et al., "Why do tree-based models still outperform deep learning...?", NeurlPS 2022 (Abstract).
Shwartz-Ziv & Armon, "Tabular Data: Deep Learning is Not All You Need", Information Fusion 2022 (Abstract). _
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o.o\u Quality Analytics - Jiang et al., "A Data-Centric Perspective on Evaluating Machine Learning Models...", ArXiv 2024 (Abstract).



I The Tabular Data War (2022-2025)

2022 NeurlPS, 2l1&=4=:2498%] (2026/1/23)

“We have beaten GBDT” Issues:

« Unequal Tuning

« No Benchmark

« Unreplicability
“No, you haven’t”

i.' Data Mining  Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural
%% Quality Analytics Information Processing Systems, 35




I The Tabular Data War (2022-2025)

< CIO|EJAl M 7% (OpenMLOIAl & 457 O] E{ Al & M)
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c.' Data Mining Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural _
%% Quality Andlytics Information Processing Systems, 35
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-AE 2H:

DL Tree Based
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FT-Transformer Gradient Boosting
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i.' Data Mining  Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural
%% Quality Analytics Information Processing Systems, 35




I The Tabular Data War (2022-2025)

1. BI X E (Metrics):
« Classification: Test Accuracy (H=%)

 Regression: R2 Score (3=

2. S 9 (Aggregation Strategy):
« ADTM(average distance to the minimum): 2 X=-E 0(st¢lH) ~ 1(Z| W) = Hetst £
o OFH(0AE) 7|IZ: St 10%(EF2H|) / 512 50% (2] FH 2 H])

« 082 7IE=2 &0 2 (Worst)'2 &X| A4S 22 M O &K 2= &YX,

ot

I" Data Mining  Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural 10
e ® Quality Analytics  |nformation Processing Systems, 35
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Only numerical features
Classification (16 datasets)

Regression (19 datasets)
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\‘ Data Mining  Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural
%% Quality Andlytics Information Processing Systems, 35
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=
7| Z CllOJE{ Aol B2 A (HE) S L

1. A% AH| (The Experiment):
0.9 « Jbd:ResNetzt Z2 3L Fx= 27 Qe
= GradientBoostingTree
M —l— 4
. W =23 Uninformative) 401 #<fstH, 0]
\Hf\m. 3t S40| S04 S E2| 7|8 RYECHY50
: O 3| of=fg 20|k

&

—

=

Normalized test score of best
model (on valid set) after
30 random search iterations
o
~J

0.6 =
= S4S AetEA 7 gle BAR L0[=
0.5 - .
b. Adding features (Standard Gaussians) Sd& QM2 3¢
2. X=: =M HEEN 5429 H&(0~100%)
0% 25% 50% 75% 100%
Percentage of uninformative 3. Y= A A REO Y otEl HAE Ea
features added
IS
\‘ Datfa Mining Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on typical tabular data?. Advances in Neural
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GradientBoostingTree 1. Ag 44 (The Experiment):
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The Tabular Data War (2022-2025)

2025 NeurlPS, el&==:29%] (2026/1/23)

1. Problematic data:
TabArena: A Living Benchmark for

« Qutdated, problematic license, data leakage Machine Learning on Tabular Data

O

L] 0:1 A I < R e a [ V\/ O r [ d ta S k) % [¢) |‘ I ‘ % _éI;II- . Nick Erickson' Lennart Purucker® Andrej Tschalzev® David Holzmiiller**-¢

Prateek Mutalik Desai'  David Salinas®?  Frank Hutter” "
! Amazon Web Services  *University of Freiburg ~ ?University of Mannheim  *INRIA Paris

2 R B a Se li n es St u C k i n Ti m e : SEcole Normale Supérieure  PSL Rcs;:ricil@lg::/:rrii]?; . a;l’r‘u:vr Labs  SELLIS Institute Tiibingen
o BIXDI2 7ot B HHETH PHO|EEX IS

< C) . Abstract
With the growing popularity of deep learning and foundation models for tabu-
1 lar data, the need for standardized and reliable benchmarks is higher than ever.
[ ] _JK_‘ )\ | E L_j | < S OTA) O | I__"QJ_ — E‘I ‘ E O:| I‘I O I E _1 However, current benchmarks are static. Their design is not updated even if flaws
L = AN L— L L = are discovered, model versions are updated, or new models are released. To ad-
dress this, we introduce TabArena, the first continuously maintained living tabular
e L benchmarking system. To launch TabArena, we manually curate a representa-
}> _, O |— H ‘ _’ [@) I— tive collection of datasets and well-implemented models, conduct a large-scale
benchmarking study to initialize a public leaderboard, and assemble a team of
experienced maintainers. Our results highlight the influence of validation method
and ensembling of hyperparameter configurations to benchmark models at their
M M full potential. While gradient-boosted trees are still strong contenders on practical
3 ° U n re I I a b le Eva Iu at I o n : tabular datasets, we observe that deep learning methods have caught up under
larger time budgets with ensembling. At the same time, foundation models excel
on smaller datasets. Finally, we show that ensembles across models advance the
state-of-the-art in tabular machine learning. We observe that some deep lean-

[ ] 7 ‘ —jll_c— %‘ 7 }’ E E EEE_ O‘H [H _CI)I;|‘ §_| 9‘ % (S ke pt| C i S m ) % 7 "' ing models are ovcrrc?rtsen(ed in crcss-mndc! cn:.;cmblu.::s dg.c_lc? validation set

overfitting, and we encourage model developers to address this issue. We launch
= A re) ‘ HF ‘ A | ‘ oro
. T4 QlT0f M 20| LA 0]T 2T X ¥,

TabArena with a public leaderboard, reproducible code, and maintenance protocols
to create a living benchmark available at https://tabarena.ai.

.:" Data Mining Erickson, N., et al. (2025). TabArena: A Living Benchmark for Machine Learning on Tabular Data. Advances in Neural Information Processing Systems, 38. 15
@
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The Tabular Data War (2022-2025)

A

s (2%}
- [Performance (Error Rate)]

Pareto Frontier

© Model A
HEEH2l 3
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(Ideal Goal)
Model D & @ Modelc &1
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Moclel E © Model E
e Pareto Frontier
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>
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HIZ (&& MZHHIZ)
[Cost (Training Time/Expense)]

1. 2022 (Scientific Fairness):
« J|Z: Iteration (EH=E 214

- YH UBtHOo = MFY0| E2| B

2. 2025 (Production Fairness):
- J|&: Time Budget (Mot AIZH),
« Pareto Frontier (A2t CHH| H&) &

=Y.

q -~
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Default Tuned Tuned + Ensembled

TabPFNv2
RealMLP
TabM
LightGBM
CatBoost
XGBoost
ModernNCA
TabDPT
EBM
TorchMLP
FastaiMLP
ExtraTrees
RandomForest
Linear

KNN

— - ——

AutoGluon 1.3 (4h)

800 1000 1200 1400

Elo

1600 1800
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&

Erickson, N., et al. (2025). TabArena: A Living Benchmark for Machine Learning on Tabular Data. Advances in Neural Information Processing Systems, 38.

1. DataSet (tabPFNv2 A& 7+s H|0|EH):
« Small Data(H|O[& 12F 7 0|5 Z & 50074 O[S},
2. BIHX[H : Elo
- ds #%l(Auc, RMSE &)= Bl E2|-H 2| (BT) 2
2 5g 2405, i Z2AE(1000E)E 7|E2
2 2hA5He =X 2ok g4
3. Z3f (Rank): TabPFNV2 (X=X 29/eF HAF F).
« SHOILF Y= 2l0], 7| E2al(IfE) e =2 0] £
A2,
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Transformer—based Bayesian Inference for Tabular Data

20357.11

NFEEIIT mu s
Transformer-based Bayesian Inference fo
B} g ZE8=x

B 20258 TH 11Y
{3 2124~
O =2iel |2 AlH (YouTube)

MojLt 2 2| —

< H\.,
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Hollmann, N., Miiller, S., Purucker, L. et al. Accurate predictions on small data with a tabular
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Uninformative features
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Data Mining
Quality Analytics  foundation model. Nature 637, 319-326 (2025).

Hollmann, N., Miiller, S., Purucker, L. et al. Accurate predictions on small data with a tabular

Aol 24 A& HO[EAle] E4 Dol .=0|= 5429 x DA
27190%)
B 2l 2 HIO[H A B Y 109/9] g Ay B gl

EIOIEH Al : AutoML Benchmark, OpenML-CTR230{A{ A
Sl 257 297H, 2|7 2874
S  NES

« Classification: Normalized ROC AUC

« Regression: Normalized Negative RMSEE 113t

Normalization 8FAl: min-max normalization
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Tabular Data

MLP
(Mixes Axes)

Feature 1 Embedding

Feature 2 Embedding

Feature 3 Embedding

FT-Transformer
(Splits Axes)

Prior Knowledge
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Il The Tabular Data War (2022-2025

Default Tuned Tuned + Ensembled
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Jl Conclusions

1. Helgel AgH py 3=
« TheBarriers: Smoothness Bias, Uninformative Features, Rotational Invariance
« =25 0HLIE: Synthetic Priors (TabPFN), Attention,

2. Tabular Foundation Model: Zero-shot, In-context Learning

50| T3 MAIZF el

3. Living Benchmark(tabArena) : £
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